Content Word Aware Neural Machine Translation

Kehai Chen, Rui Wang, Masao Utiyama, and Eiichiro Sumita

National Institute of Information and Communications Technology (NICT), Kyoto, Japan

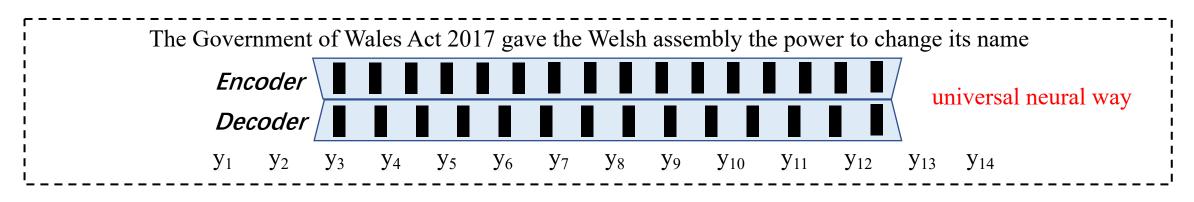
Outline

- Motivation
- Preliminary Experiment
- Content Word Recognition
- Proposed NMT models
- Experiments
- Conclusion

Motivation

Existing Encoder-Decoder NMT model

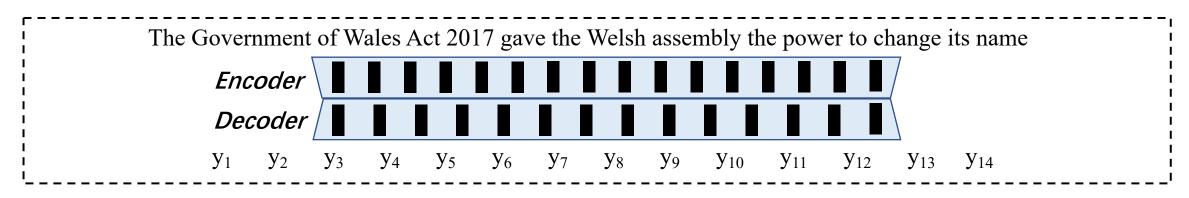
Encoding and generating all source/target words in a universal neural way



Motivation

Existing Encoder-Decoder NMT model

■ Encoding and generating all source/target words in a universal neural way



■ Not considering the importance of word in the sentence meaning

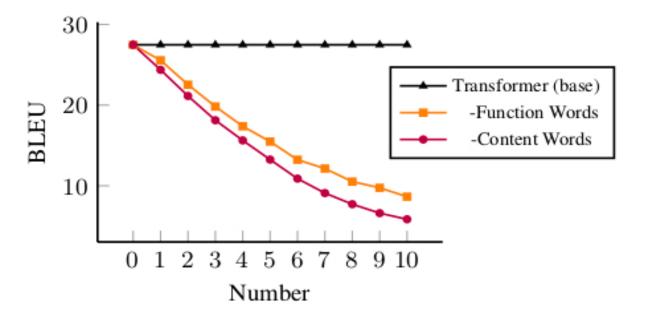
Function words: The Government of Wales Act 2017 gave the Welsh assembly the power to change its name *Content words*: The Government of Wales Act 2017 gave the Welsh assembly the power to change its name

Content words express more important meaning than *function words* in the sentence meaning.

Preliminary Experiment

Preliminary

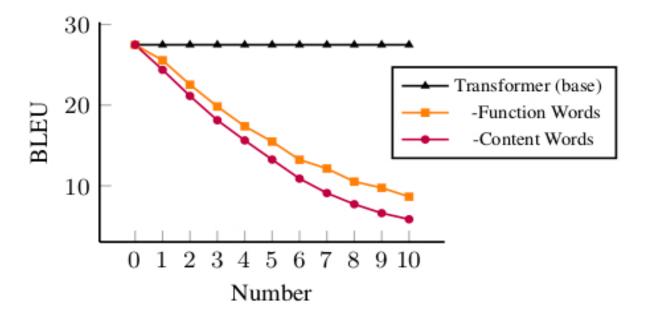
- ✓ Given a trained Transformer-based NMT model for the WMT14 English-German translation task
- ✓ Randomly masked content ("-Content Words") or function words ("-Function Words") with UNK in a source sentence
- ✓ The trained NMT model decodes these masked test set



Preliminary Experiment

Preliminary

- ✓ Given a trained Transformer-based NMT model for the WMT14 English-German translation task
- ✓ Randomly masked content ("-Content Words") or function words ("-Function Words") with UNK in a source sentence
- ✓ The trained NMT model decodes these masked test set

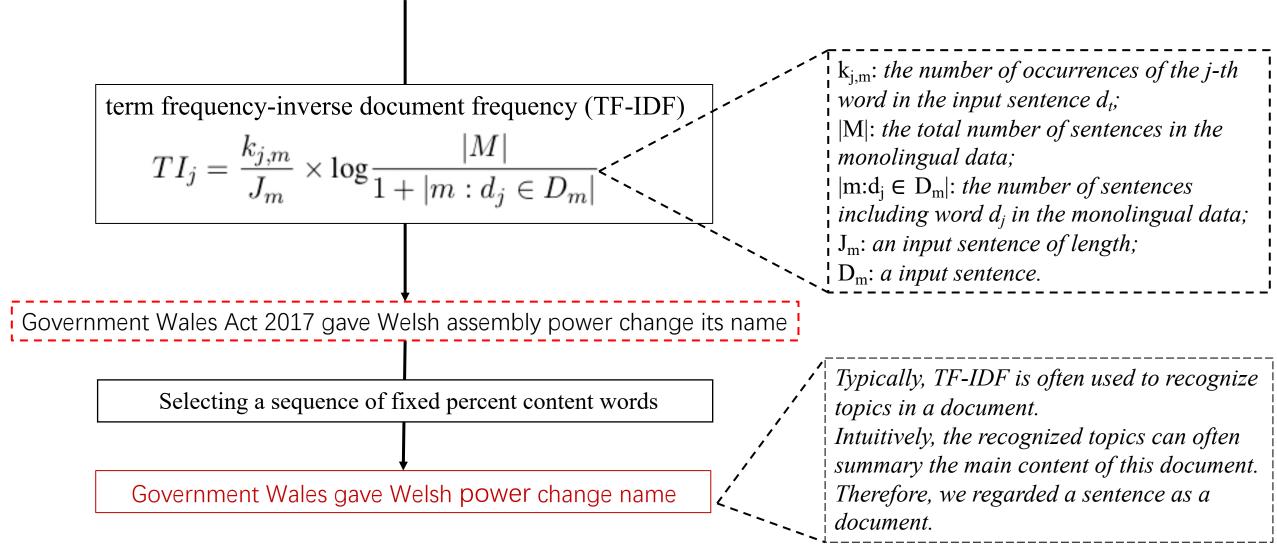


Findings

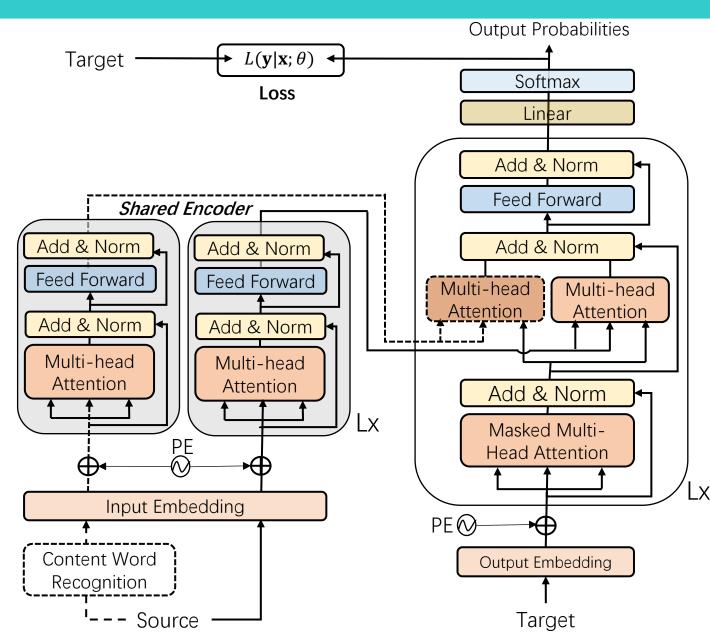
- Content words have a greater effect on modeling translation between a language pair
- > NMT should pay more attention to content words in a sentence

Content Word Recognition

The Government of Wales Act 2017 gave the Welsh assembly the power to change its name



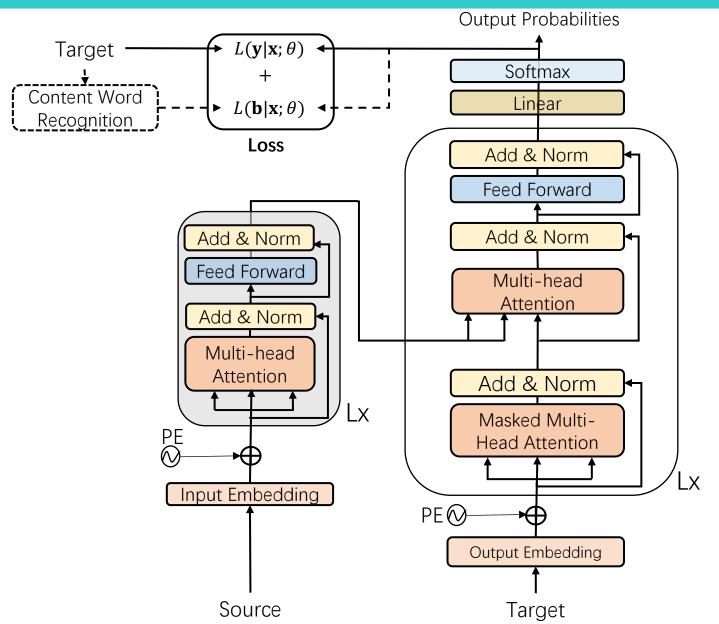
Proposed NMT models



SCWAContext: Based on the sequence of the recognized source content words, we use a shared encoder to learn its representation, and thereby obtain an additional context vector to improve the prediction of target word:

$$\begin{split} \overline{\boldsymbol{\mathcal{S}}}_{i}^{l} &= \mathrm{LN}(\mathrm{ATT}_{d}^{l}(\mathbf{Q}_{i}^{l-1},\mathbf{K}_{i}^{l-1},\mathbf{V}_{i}^{l-1}) + \boldsymbol{\mathcal{S}}_{i}^{l-1}), \\ \mathbf{C}_{i}^{l} &= \mathrm{LN}(\mathrm{ATT}_{c}^{l}(\overline{\boldsymbol{\mathcal{S}}}_{i}^{l},\mathbf{K}_{e}^{L},\mathbf{V}_{e}^{L}) + \overline{\boldsymbol{\mathcal{S}}}_{i}^{l}), \\ \boldsymbol{\mathcal{C}}_{i}^{l} &= \mathrm{LN}(\mathrm{ATT}_{y}^{l}(\overline{\boldsymbol{\mathcal{S}}}_{i}^{l},\boldsymbol{\mathcal{K}}_{e}^{L},\boldsymbol{\mathcal{V}}_{e}^{L}) + \overline{\boldsymbol{\mathcal{S}}}_{i}^{l}), \\ \boldsymbol{\mathcal{S}}_{i}^{l} &= \mathrm{LN}(\mathrm{FFN}_{d}^{l}(\mathbf{C}_{i}^{l} + \boldsymbol{\mathcal{C}}_{i}^{l}) + \mathbf{C}_{i}^{l}), \\ P(y_{i}|y_{< i},\mathbf{x}) \propto \exp(W_{o} \mathrm{tanh}(W_{w}\boldsymbol{\mathcal{S}}_{i}^{L})) \end{split}$$

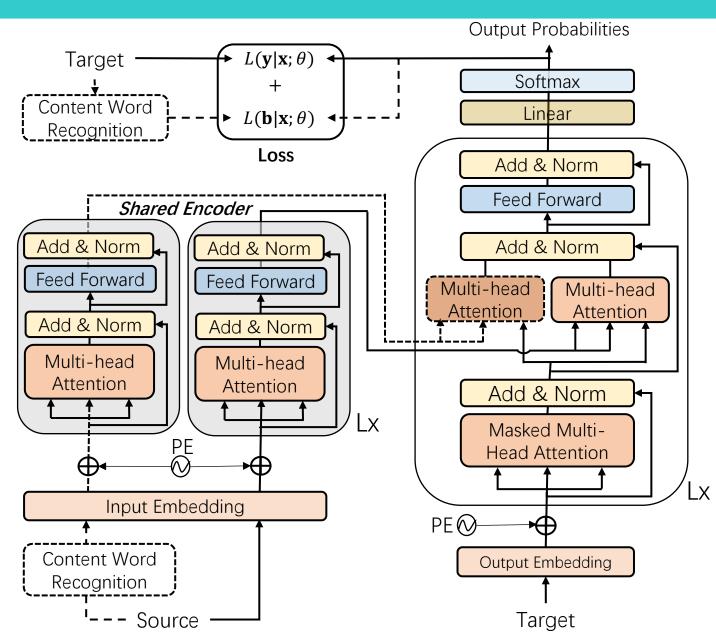
Proposed NMT models



TCWALoss: Based on the sequence of the recognized target content words, we utilize it to compute an additional loss to guide the training of the translation model:

$$\mathcal{J}(\theta) = \arg \max_{\theta} \{ P(\mathbf{y} | \mathbf{x}; \theta) + \lambda * P(\mathbf{b} | \mathbf{x}; \theta) \}$$

Proposed NMT models



BCWAContLoss: It captures the content words of both the source and the target sentences to further improve translation performance.

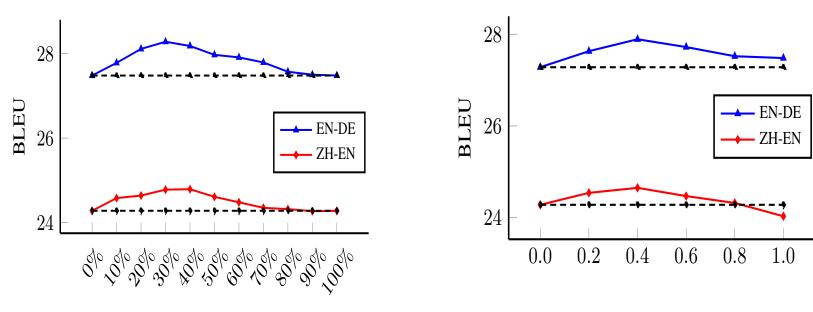
Main Results

Systems	EN-DE			ZH-EN		EN-FR	
	BLEU	#Speed	#Param	BLEU	#Param	BLEU	#Param
	Existing NMT systems						
Trans.base (Vaswani et al., 2017)	27.3	N/A	65.0M	N/A	N/A	38.1	N/A
+Context-Aware SANs (Yang et al., 2019a)	28.26	N/A	106.9M	24.67	126.8M	N/A	N/A
+Convolutional SANs (Yang et al., 2019b)	28.18	N/A	88.0M	24.80	N/A	N/A	N/A
+BIARN (Hao et al., 2019)	28.21	N/A	97.4M	24.70	107.3M	N/A	N/A
Trans.big (Vaswani et al., 2017)	$1\bar{2}\bar{8}.\bar{4}^{}$	N/Ā	213.0M	Ň/Ă	N/A	41.0	N/A
+Context-Aware SANs (Yang et al., 2019a)	28.89	N/A	339.6M	24.56	379.4M	N/A	N/A
+Convolutional SANs (Yang et al., 2019b)	28.74	N/A	339.6M	25.01	N/A	N/A	N/A
+BIARN (Hao et al., 2019)	28.98	N/A	333.5M	25.10	373.3M	N/A	N/A
Our NMT systems							
Trans.base	27.48	13.2K	66.5M	24.28	74.7M	38.32	66.9M
+SCWAContext	28.28+	12.1K	72.8M	24.79+	81.0M	39.41+	73.2M
+TCWALoss	27.94+	13.3K	66.5M	24.65	74.7M	38.89+	66.9M
+BCWAContLoss	28.51+	12.1K	72.8M	24.94+	81.0M	39.56+	73.2M
Trans.big	28.45	11.2K	221.1M	24.55	237.5M	41.21	222.9M
+BCWAContLoss	29.14+	10.1K	246.3M	25.12+	262.7M	42.57+	247.1M

Main Results

Systems	EN-DE			ZH-EN		EN-FR	
	BLEU	#Speed	#Param	BLEU	#Param	BLEU	#Param
	Existing NMT systems						
Trans.base (Vaswani et al., 2017)	27.3	N/A	65.0M	N/A	N/A	38.1	N/A
+Context-Aware SANs (Yang et al., 2019a)	28.26	N/A	106.9M	24.67	126.8M	N/A	N/A
+Convolutional SANs (Yang et al., 2019b)	28.18	N/A	88.0M	24.80	N/A	N/A	N/A
+BIARN (Hao et al., 2019)	28.21	N/A	97.4M	24.70	107.3M	N/A	N/A
Trans.big (Vaswani et al., 2017)	$1\bar{2}\bar{8}.\bar{4}^{}$		213.0M	_ <u>N/A</u>	N/A	41.0	N/A
+Context-Aware SANs (Yang et al., 2019a)	28.89	N/A	339.6M	24.56	379.4M	N/A	N/A
+Convolutional SANs (Yang et al., 2019b)	28.74	N/A	339.6M	25.01	N/A	N/A	N/A
+BIARN (Hao et al., 2019)	28.98	N/A	333.5M	25.10	373.3M	N/A	N/A
Our NMT systems							
Trans.base	27.48	I 13.2K	66.5M	24.28	74.7M	38.32	66.9M
+SCWAContext	28.28+	12.1K	72.8M	24.79+	81.0M	39.41+	73.2M
+TCWALoss	27.94+	13.3K	66.5M	24.65	74.7M	38.89+	66.9M
+BCWAContLoss	28.51+	12.1K	72.8M	24.94+	81.0M	39.56+	73.2M
Trans.big	$1\bar{2}\bar{8}.\bar{4}\bar{5}$	Т.2К	221.1M	24.55	237.5M	41.21	222.9M
+BCWAContLoss	29.14+	10.1K	246.3M	25.12+	262.7M	42.57+	247.1M

Evaluating Content Word Recognition

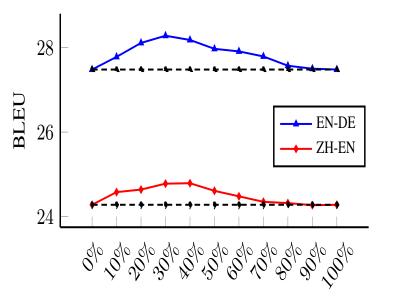


Effect of Content Word-Aware Loss

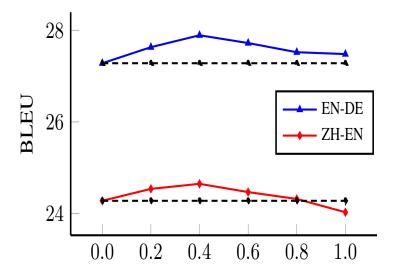
The percent of N for +SCWACont model

 λ for +TCWALosst model

Evaluating Content Word Recognition



Effect of Content Word-Aware Loss



***** Evaluating Generation of Content Words

System	EN-DE	ZH-EN
Trans.base	51.0%	53.8%
+SCWAContext	51.9%	54.6%
+TCWALoss	51.5%	54.2%
+BCWAContLoss	52.1%	54.7%

The percent of N for +SCWACont model

 λ for +TCWALosst model

Table 2: Accuracy of unigram content words on the EN-DE and ZH-EN test sets

- Explored the importance of word in a sentence for NMT
- Recognized content words through statistical word frequency information
- Simple and efficient, not much time and space cost, and introduced to the training and inference