Instance Weighting for NMT Domain Adaptation

Originally presented in EMNLP-2017

Rui Wang, Masao Utiyama, Lemao Liu*, Kehai Chen** and Eiichro Sumita National Institute of Information and Communications Technology (NICT) *Tecent AI Lab **Harbin Institute of Technology

https://github.com/wangruinlp/nmt_instance_weighting

ASTREC, NICT. 3-5 Hikaridai, Seika-cho, Soraku-gun, Kyoto 619-0289, Japan.

Contact Information:

Email: mutiyama@nict.go.jp

Hypothesis

- Instance weighting has been widely applied to PBSMT domain adaptation.
- Can it be implemented in NMT?

Adaptation Methods SMT NMT					
Sentence Selection Model Combination Instance Weighting	Many	Ensemble or Fine tuning [3]			

Instance Weighting for NMT

The training corpus \mathcal{D} can be divided into in-domain one \mathcal{D}_{in} and the out-of-domain one \mathcal{D}_{out} . So, The NMT training objective (maximize) is formulated as,

Original

$$J = (\sum_{\langle \mathbf{x}, \mathbf{y} \rangle \in \mathcal{D}_{in}} \log p(\mathbf{y}|\mathbf{x}) + \sum_{\langle \mathbf{x}', \mathbf{y}' \rangle \in \mathcal{D}_{out}} \log p(\mathbf{y}'|\mathbf{x}')), \tag{1}$$

where $\langle \mathbf{x}, \mathbf{y} \rangle$ is a parallel sentence pair.

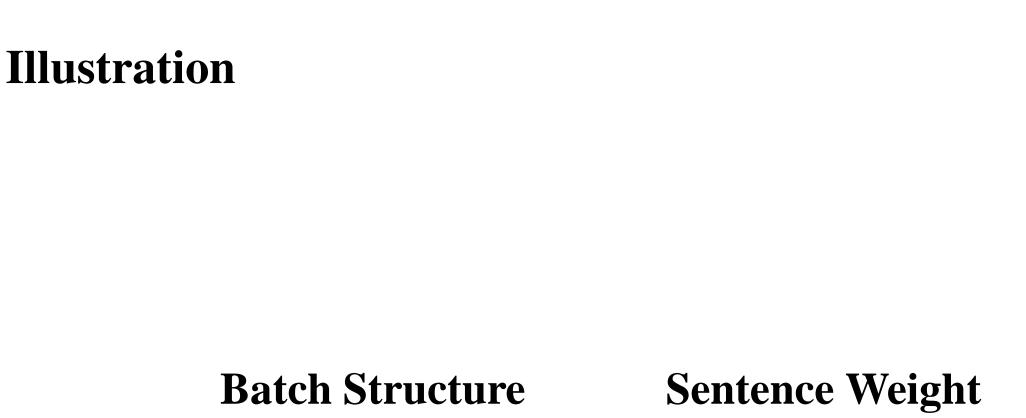
Sentence Weighting

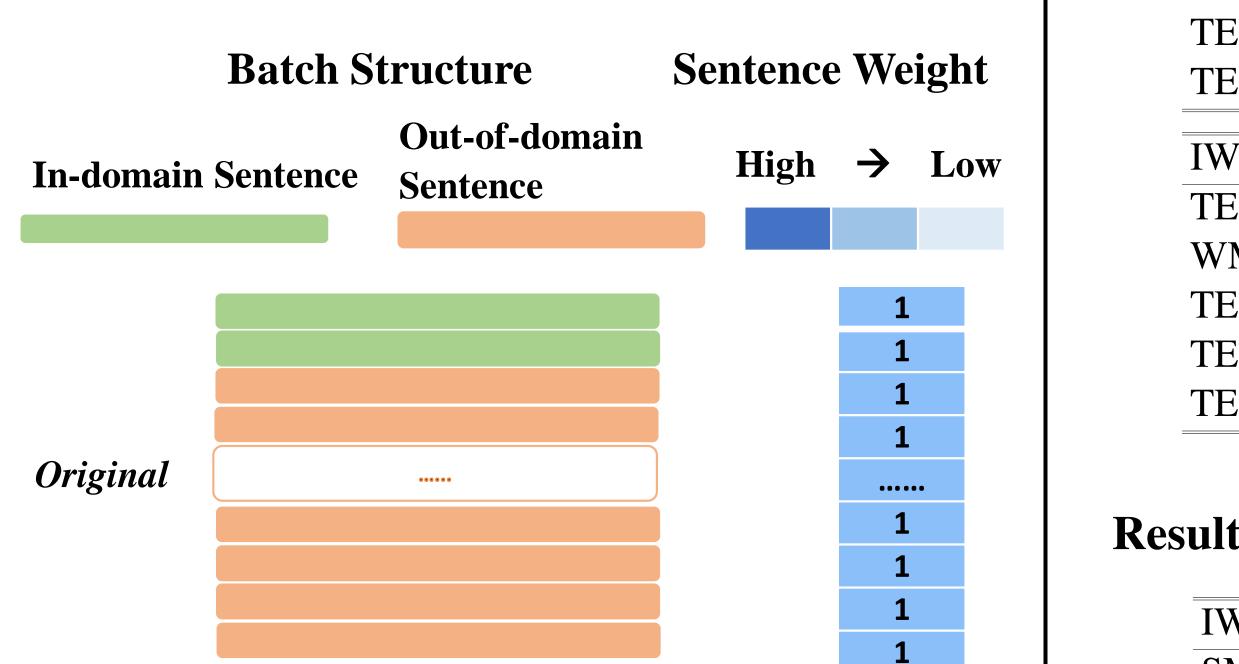
$$J_{sw} = \sum_{\langle \mathbf{x}_i, \mathbf{y}_i \rangle \in \mathcal{D}} \lambda_i \log p(\mathbf{y}_i | \mathbf{x}_i).$$
(2)

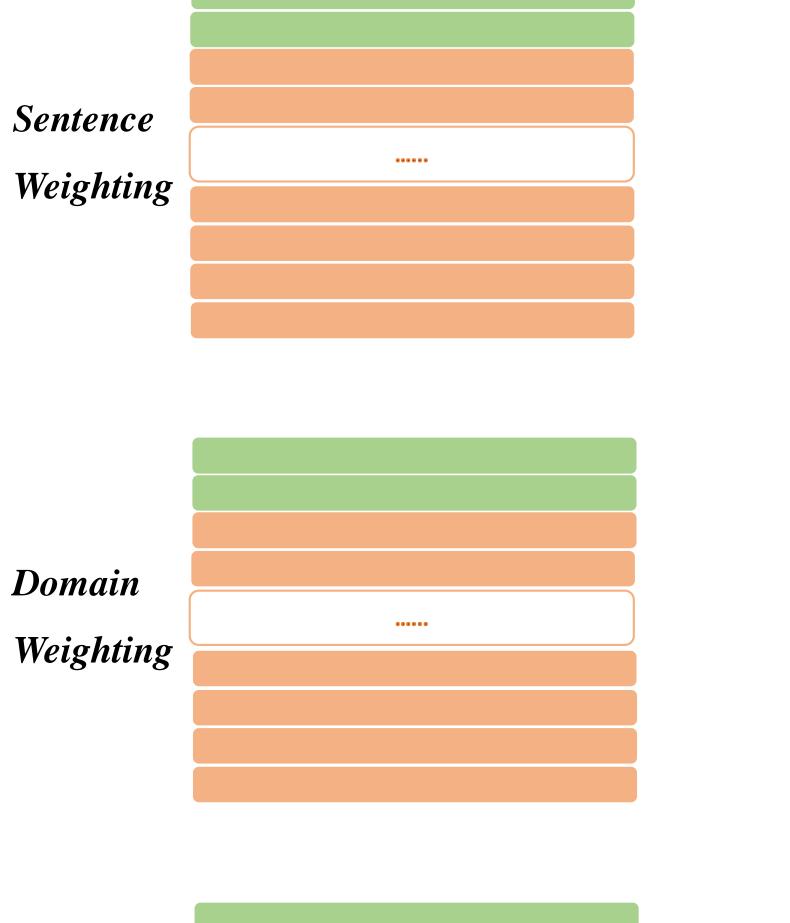
where λ_i is the cross-entropy proposed by [1]:

$$\lambda_i = \delta(H_{out}(\mathbf{x}_i) - H_{in}(\mathbf{x}_i) + H_{out}(\mathbf{y}_i) - H_{in}(\mathbf{y}_i)).$$
 (3)

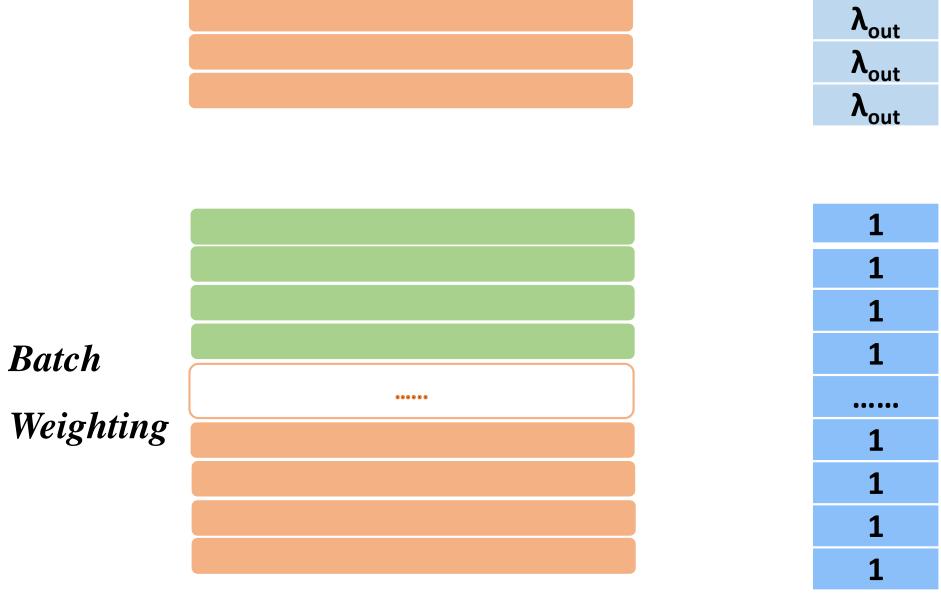
Domain Weighting


$$J_{dw} = \lambda_{in} \sum_{(\mathbf{x}, \mathbf{y}) \in \mathcal{D}_{in}} \log p(\mathbf{y}|\mathbf{x}) + \lambda_{out} \sum_{(\mathbf{x}', \mathbf{y}') \in \mathcal{D}_{out}} \log p(\mathbf{y}'|\mathbf{x}'). \tag{4}$$


Batch Weighting


To modify the ratio between in-domain and out-of-domain data in each NMT mini-batch. That is, we can increase the in-domain weight by increasing the number of in-domain sentences included in a mini-batch. The updated in-domain data ratio \mathcal{R}_{in} in each NMT mini-batch can be calculated as,

$$\mathcal{R}_{in} = \frac{|\hat{\mathcal{D}}_{in}|}{|\hat{\mathcal{D}}'_{in}| + |\hat{\mathcal{D}}'_{out}|} = \frac{\lambda_{in}}{\lambda_{in} + \lambda_{out}},\tag{5}$$


where $|\hat{\mathcal{D}}_{in}|$ and $|\hat{\mathcal{D}}_{out}|$ are the sentence number from in and out-of-domain data in each mini-batch, respectively.

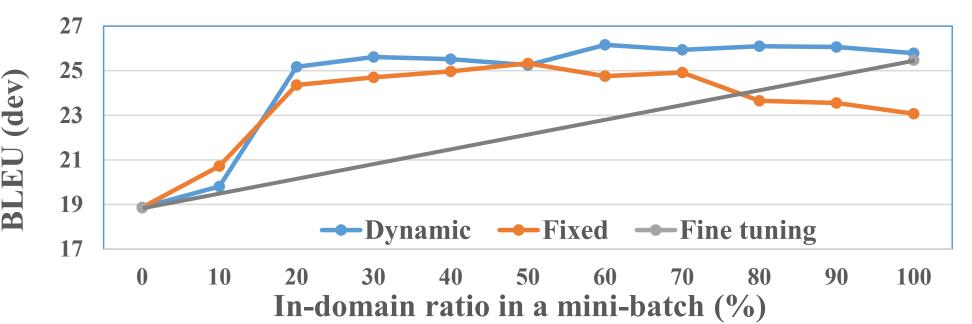
Batch

Data sets

IWSLT EN-DE	Sentences	Tokens
TED training (in-domain)	207.1K	3.2M
WMT training (out-of-domain)	4.5M	119.9M
TED tst2012 (development)	1.7K	29.2K
TED tst2013 (test)	0.9K	19.6K
TED tst2014 (test)	1.3K	23.8K
IWSLT EN-FR	Sentences	Tokens
TED training (in-domain)	178.1K	3.5M
WMT training (out-of-domain)	17.8M	450.0M
TED dev2010 (development)	0.9K	20.1K
TED tst2010 (test)	1.6K	31.9K
TED tst2011 (test)	0.8K	21.4K

Results

IWSLT EN-DE	tst2012	tst2013	tst2014
SMT (in)	20.70	21.01	18.50
SMT (out)	18.82	18.12	16.85
SMT (in + out)	20.04	20.23	17.08
in	23.07	25.40	21.45
out	18.87	21.23	17.07
in + out	21.31	23.54	19.41
ensemble (in + out)	24.34	25.83	22.50
Oversampling	23.37	25.22	21.91
Kobus et al. [2]	23.23	25.70	22.03
Axelrod et al. [1]	23.87	25.52	22.41
sentence weighting	23.46	26.26+	22.51
domain weighting	23.55	25.47	21.45
batch weighting (bw)	25.33++	27.45++	23.68++
bw + dynamic tuning	26.03++	28.58++	24.12++
IWSLT EN-FR	dev2010	tst2010	tst2011
SMT (in)	27.35	31.06	32.50
SMT (out)	26.26	30.04	29.29
SWIT (OUL)	20.20		
SMT (out) SMT (in + out)	27.16	30.00	30.26
,		30.00 32.11	30.26 35.22
SMT (in + out)	27.16		
SMT (in + out) in	27.16 27.66	32.11	35.22
SMT (in + out) in out	27.16 27.66 24.93	32.11 29.60	35.22 32.27
SMT (in + out) in out in + out	27.16 27.66 24.93 25.14	32.11 29.60 29.94	35.22 32.27 33.50
SMT (in + out) in out in + out ensemble (in + out)	27.16 27.66 24.93 25.14 28.48	32.11 29.60 29.94 33.63	35.22 32.27 33.50 37.67
SMT (in + out) in out in + out ensemble (in + out) Oversampling	27.16 27.66 24.93 25.14 28.48 28.67	32.11 29.60 29.94 33.63 34.12	35.22 32.27 33.50 37.67 38.08
SMT (in + out) in out in + out ensemble (in + out) Oversampling Kobus et al. [2]	27.16 27.66 24.93 25.14 28.48 28.67 27.87	32.11 29.60 29.94 33.63 34.12 33.81	35.22 32.27 33.50 37.67 38.08 37.44
SMT (in + out) in out in + out ensemble (in + out) Oversampling Kobus et al. [2] Axelrod et al. [1]	27.16 27.66 24.93 25.14 28.48 28.67 27.87 27.85	32.11 29.60 29.94 33.63 34.12 33.81 34.03	35.22 32.27 33.50 37.67 38.08 37.44 38.30
SMT (in + out) in out in + out ensemble (in + out) Oversampling Kobus et al. [2] Axelrod et al. [1] sentence weighting	27.16 27.66 24.93 25.14 28.48 28.67 27.87 27.85 29.14+	32.11 29.60 29.94 33.63 34.12 33.81 34.03	35.22 32.27 33.50 37.67 38.08 37.44 38.30 38.73 39.06+


Weights Tuning

Fixed Weight Tuning

NMT systems with various weights are trained separately, and the best performed system on dev data is selected and evaluated on the test data.

Dynamic Weight Tuning

The initial in-domain data ration in mini-batch is set as 0%. We increased 10% ratio of in-domain data if the training cost does not decrease for ten-time evaluations on dev data.

Relationship with Fine Tuning

Fine tuning [3]: train NMT model by using 0% in-domain data at first and then using 100% in-domain data.

Batch weighting: keep some ratio of out-of-domain data during the whole training process.

IWSLT EN-DE	tst2012	tst2013	tst2014
Luong et al. [3]	25.68	28.14	24.31
Luong + bw	25.87	28.54+	24.53
bw + dynamic tuning	26.03	28.58+	24.12
IWSLT EN-FR	dev2010	tst2010	tst2011
Luong et al. [3]	29.33	35.36	40.62
Luong + bw	29.65	35.65	41.20+
bw + dynamic tuning	30.40++	36.50++	41.90++
	1	1	1

References

- [1] Amittai Axelrod et al. Domain adaptation via pseudo indomain data selection. In EMNLP, 2011.
- [2] Catherine Kobus et al. Domain control for neural machine translation. arXiv, 2016.
- [3] Minh-Thang Luong et al. Stanford NMT systems for spoken language domains. In IWSLT, 2015.
- [4] Rui Wang et al. Sentence embedding for neural machine translation domain adaptation. In ACL, 2017.