

NICT's Machine Translation Systems for CCMT-2019 Translation Task

Kehai Chen Rui Wang Masao Utiyama Eiichiro Sumita {khchen,wangrui,mutiyama,eiichiro.sumita}@nict.go.jp

National Institute of Information and Communications Technology (NICT), Kyoto, Japan

1. Summary

Abstract

- This paper describes the NICT's neural machine translation systems for Chinese↔English directions in the CCMT-2019 shared news translation task.
- Our system makes use of techniques that have been proven to be most effective to improve the performance of NMT model, and thereby generates the primary submissions of Chinese \leftrightarrow English translation tasks.

Key points

- Using Marian Toolkit (v1.7.6) to build baseline translation model for Chinese \leftrightarrow English translation tasks.
- Back-translation technique is used to performe data augmentation for providing a large quantity of pseudo parallel data.
- Fine-tuning technique to further optimizate the trained NMT model on small development data.
- Ensemble technique focuses on making full use of diverse NMT models to generate better translations.

2. Datasets and Preprocessing

Datasets: pre-processed parallel data (left table) and pre-processed monolingual data (right table)

Language pair	$\#$ Sentence pairs \cdot	#Tokens		Language	#Sentences	#Tokens
		Chinese	English	English	$338.7\mathrm{M}$	7.5B
$Chinese \leftrightarrow English$	$24.8\mathrm{M}$	$509.9\mathrm{M}$	$576.2\mathrm{M}$	Chinese	$130.5\mathrm{M}$	2.3B

Pre-processing steps

- For Chinese and English monolingual data:
 - Empirical selecting the first ten million lines of the News Crawl 2019 English corpus
 - English: tokenizer and truecaser in Moses
 - Chinese: Jieba
 - Filtering out sentences longer than 80 tokens in the training data

– Replacing characters forbidden by Moses

3. Experiments

Marian Toolkit (v1.7.6) for Chinese \leftrightarrow English

- 50,000 sub-word vocabularies
- Batch sizes of 4096 words
- The number of dimensions of input and output layers was set to 512
- The inner feed-forward neural network layer was set to 2048
- The number of attention heads was set to eight
- Warm-up steps of 16,000
- The label smoothing and attention dropout were set to 0.1

Main results (BLEU-cased)

- The Adam optimizer was used to tune the parameters of the model
- Both encoder and decoder are stack of 6 SAN layers
- All models trained on four P100 GPUs
- Train till convergence on development data
- Early stopping and fine-tuning on development data
- Ensemble 5 independent runs for decoding
- Beam size and length penalty tuned on dev set

#	System	$ZH \rightarrow EN$	$EN \rightarrow ZH$
1.	Single Transformer (base) model (w/o back-translation)	23.3	30.3
2.	Single Transformer (base) model (w/ back-translation)	25.3	31.8

3.	Single Transformer (base) model (w/ fine-tuning)	27.5	33.1
4.	ensembling five single models (w/ back-translation and fine-tuning)	31.0	34.5

Observation

- Back-translation obtains improvements by 2.0 BlEU scores (#2) over single Transformer (base) model (w/o back-translation) (#1)
- Large improvements with Single Transformer (base) model (w/ fine-tuning)
- \bullet Best results with ensemble five single models (w/ back-translation and fine-tuning)
- This results conformed that these three methods can incrementally improve translation performance.