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Reordering information in SMT

Introduction
Ordering information in NMT

• Learning large-scale reordering rules in advance
• Depending on bilingual parallel sentence pair 

with “hard” word alignments

x5x2 x3 x4x1 x6 x7 x8

y5y2 y3 y4y1 y6 y7 y8

m m d s d
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𝐩𝐞($,&'78) = cos(𝑗/10000&'/123456)

Recurrent neural network

Self-attention network with positional embeddings
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• Depending on neural network itself or positional 
encoding mechanism to encode order sequentially

• Only “soft” attention alignment



Related Work
Pre-ordering source sentence (Goto et al., 2013) 

Pre-ordered each source sentence into the 
similar order as its target sentence

Japanese: kara wa kinou hon wo katta

Pre-odering: kara wa katta hon wo kinou

English: he bought books yesterday
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Related Work

Additional position-based attention (Zhang et al., 2017) 

Relative position representation (Shaw et al., 2018) 

Pre-ordering source sentence (Goto et al., 2013) 

Reordered each source sentence into the similar 
order as its target sentence

Japanese: kara wa kinou hon wo katta

Pre-odering: kara wa katta hon wo kinou

English: he bought books yesterday

2 <= k <= n − 4



In Transformer framework, the existing positional encoding focuses on sequentially encoded
order relations between words, and does not explicitly consider reordering information in a
sentence.
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Motivation

w5 w1 w2 w3 …w4 wJ

w5w2 w3 w4 …w1 wJ

Context information

w1 w2 w3 w4 …w5 wJ

w1 w2 w3 w4 …w5 wJ

5 1 2 3 …4 J

1 2 3 4 5 J…

Modeling Reordering

Reordering operation

Context information

Word order

Modeling the human reordering processing:
• Word order
• Context information
• Reordering operation

In Transformer framework, the existing positional encoding focuses on sequentially encoded
order relations between words, and does not explicitly consider reordering information in a
sentence.
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Experiments
Data sets: WMT14 English-to-German (EN-DE), NIST Chinese-to-English (ZH-EN), and WAT ASPEC

Japanese-to-English (JA-EN) benchmarks

Baselines: vanilla Transformer, Relative PE, Additional PE (control experiment), and pre-reordering (JA-EN)

Our models: Encoder_REs, Decoder_REs, and Both_REs

Main configure: N dmodel dff H Pdrop els
base 6 512 2048 8 0.1 0.1

big 6 1024 4096 16 0.3 0.2

System setting: BPE translation units, OpenNMT toolkit, batch-size 4096*4 tokens, single P100 GPU, and so on

Evaluating: SacreBLEU for EN-DE translation task, and multi-bleu.perl for ZH-EN and JA-EN translation tasks
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Effect of REs

Figure 3: The effect of reordering in the test set
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for test set of ZH-EN.
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Figure 3: The effect of reordering in the test set
where the word orders are partially wrong for test
set of EN-DE.

Figure 4: The effect of reordering in the test set 
where the word orders are partially wrong for 
test set of JA-EN.

Figure 4: The effect of reordering in the test 
set where the word orders are partially wrong 
for test set of ZH-EN.

1. Reordering embedding can capture reordering information, especially, 0%~40%
2. Excessive exchanges of word orders are not conductive to learn reordering embedding, 

when more than 40% 
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Transformer (base): the incident killed nine people
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The proposed reordering embedding is beneficial to generate a translation 
in line with the target language word order.
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Conclusion and Future Work

• Introduce the reordering information to the Transformer initially 

• Enable the Transformer translation system to explicitly model
reordering information 

• The proposed reordering mechanism can be easily integrated into the 
Transformer to improve the translation performance

• In the future, we will further explore the effectiveness of reordering embeddings 
and try to apply reordering embeddings into other NLP tasks
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