
Syntax-Directed Attention for Neural Machine Translation

Kehai Chen¹, **Rui Wang**², Masao Utiyama², Eiichiro Sumita² and Tiejun Zhao¹ ¹Harbin Institute of Technology, Harbin, China ²National Institute of Information and Communications Technology, Kyoto, Japan {khchen, tjzhao}@hit.edu.cn, {wangrui, mutiyama, eiichiro.sumita}@nict.go.jp

1. Introduction

- In attention mechanism (Fig 1.a), alignment weights of the current target word often decrease to the left and right by linear distance (Fig 1.b) centering on the aligned source position and neglect syntax distance constraints.
- In linear distance, syntax-related source words are often far away from the aligned source word, and thus they can not be adequately taken into account during learning context vector.

2. Syntax Distance Constraint

3. Syntax-Directed Attention & Double Context

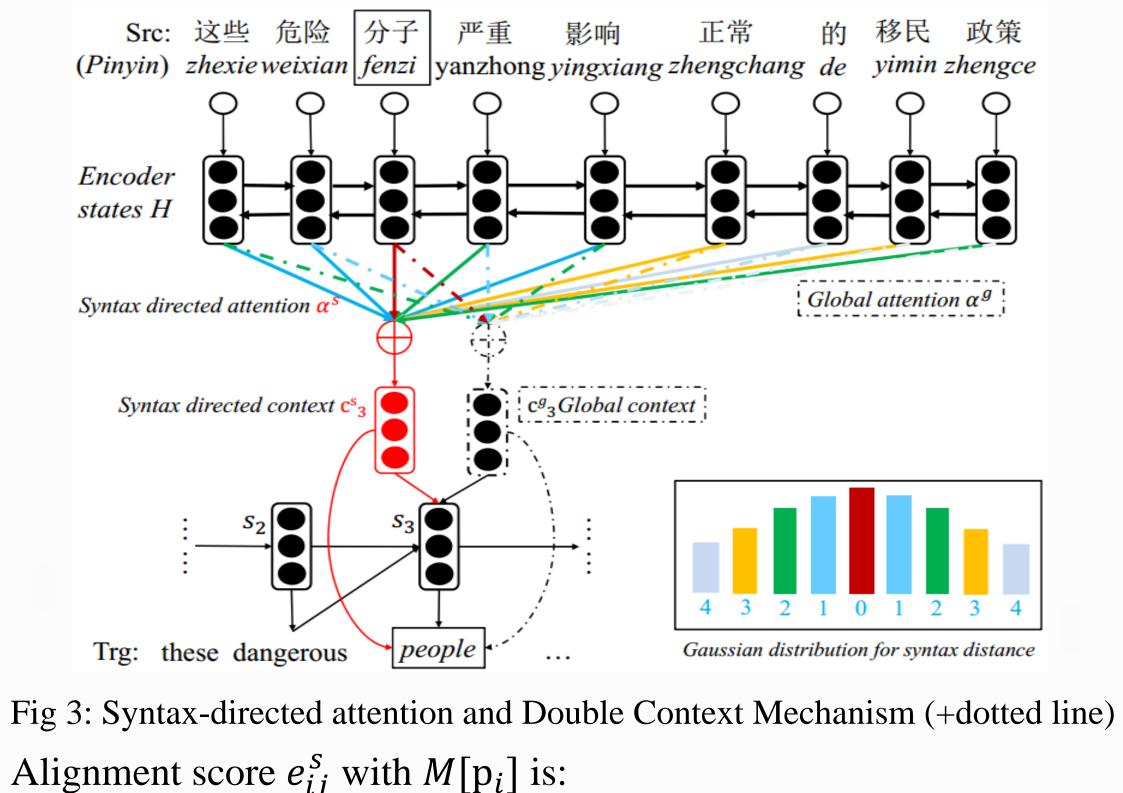


Fig 1: (a) NMT with the local attention. (b) Linear distance of word "fenzi" (c) Syntax distance of word "fenzi".from source dependency tree

• Syntax-directed attention is proposed to capture syntax related source words with the predicted target word by syntax distance constraint (Fig 1.c) instead of linear distance constraints.

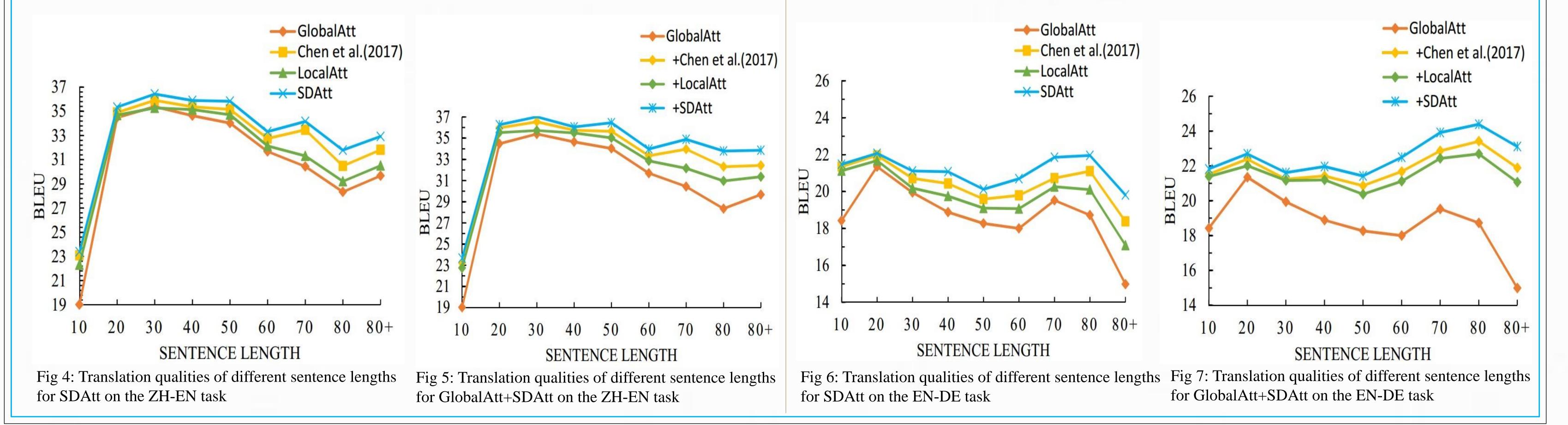
Fig 2: Syntax distance constraint mask matrix *M* for the dependency-based Chinese sentence in Fig 1.c, in which each row denotes the syntax distance mask of one source word, for example the dotted black box is syntax distance constraint mask for source word "*fenzi*".

Linear distance of "fenzi" : {2, 1, 0, 1, 2, 3, 4, 5, 6}, Syntax distance of "fenzi" : {1, 1, 0, 2, 1. 3, 5, 3, 2}

Given a source sentence X with dependency tree T, each node denotes a source word x_j and the distance between two connected nodes is defined as *one*. We then traverse each word in turn, and compute distances of all remaining words to the current traversed word x_j as its syntax distance constraint mask m_j . Finally, we learn a sequence of syntax distance constraint mask $\{m_0, m_1, ..., m_j\}$, which is a J * Jmatrix M:

 $M = \{ [m_1], [m_2], \dots, [m_J] \}.$

 $e_{ij}^{s} = v \tanh(\boldsymbol{U}_{a}\boldsymbol{s}_{i}^{\prime} + \boldsymbol{W}_{a}\boldsymbol{h}_{j}) \exp\left(-\frac{(\boldsymbol{M}[p_{i}][j])^{2}}{2\sigma^{2}}\right)$ $p_{i} = J \cdot \operatorname{sigmoid}(\boldsymbol{v}^{\prime} \tanh(\boldsymbol{W}_{p}\boldsymbol{s}_{i}^{\prime}),$ where p_{i} is source aligned position and $\boldsymbol{s}_{i}^{\prime}$ is hidden state proposal. The syntax-directed attention $\alpha_{ij}^{s_{n}}$ is normalized within *n*-gram distance: $\alpha_{ij}^{s_{n}} = \begin{cases} \frac{\exp(e_{ij}^{s})}{\sum_{k \in \mathcal{M}[p_{i}][j] \le n} \exp(e_{ik}^{s})}, & j \in [p_{i} - n, p_{i} - n] \\ 0, & j \in [p_{i} - n, p_{i} - n] \end{cases}$ The syntax context vector \boldsymbol{c}_{i}^{s} : $\boldsymbol{c}_{i}^{s} = \sum_{j=0}^{J} \alpha_{ij}^{s_{n}} \boldsymbol{h}_{j}.$ and thus the probability of the next word y_{i} is: $P(y_{i}|y_{< i}, X, T) = softmax(\boldsymbol{L}_{o}tanh(\boldsymbol{L}_{w}\boldsymbol{E}[y_{i-1}] + \boldsymbol{L}_{cs}\boldsymbol{c}_{i}^{s} + \boldsymbol{L}_{d}\boldsymbol{s}_{i})).$ To further improve translation, we integrate a linear context vector \boldsymbol{c}_{i}^{g} into syntax-directed attention to predict target word: $P(y_{i}|y_{< i}, X, T) = softmax(\boldsymbol{L}_{o}tanh(\boldsymbol{L}_{w}\boldsymbol{E}[y_{i-1}] + \boldsymbol{L}_{cg}\boldsymbol{c}_{i}^{g} + \boldsymbol{L}_{cs}c_{i}^{s} + \boldsymbol{L}_{d}\boldsymbol{s}_{i}))$


4.Experiments

ZH-EN	Dev (NIST02)	F02) NIST		NIST04	NIST05	NIS	5 T06	NIST08	AVG
PBSMT	33.15	31.0	02 33.78		30.33 29.		.62 23.53		29.66
GlobalAtt	37.12	35.2	24	37.49	34.60 32		.48	26.32	33.23
Chen et al. (2017)	37.42	35.98		38.34	35.28	33.58		27.23	34.08
LocalAtt	37.31	35.57		37.85	34.93	32.74		26.83	33.58
FlexAtt	37.19	35.46		37.81	34.76	32.83		26.71	33.51
SDAtt	38.01	36.67**†		38.66 ** [†]	35.74***	34.03 ** [†]		27.66 ** [†]	34.55
EN-DE	Dev (newstest2	2012)	nev	vstest2013	newstest2	014	news	stest2015	AVG
PBSMT	14.89			16.75	15.19			16.84	16.35
GlobalAtt	17.09		20.24		18.67		19.78		19.56
Chen et al. (2017)	17.48		21.03		19.43		20.56		20.31
LocalAtt	17.19		20.74		19.00		20.15		19.96
FlexibleAtt	17.24		20.57		19.12		20.03		19.91
SDAtt	17.86		2	2 1.71 ** [†]	20.36**	·†	21	L.57** [†]	21.21

ZH-EN	Dev (NIST02)	NIST03		NIST04	NIST05	NIST06		NIST08	AVG
PBSMT	33.15	31.	02	33.78	30.33	29	.62	23.53	29.66
GlobalAtt	37.12	35.	24	37.49	34.60	32	.48	26.32	33.23
+Chen et al. (2017)	38.11	37.	35	39.00	36.12	33	.78	27.81	34.81
+LocalAtt	37.89	37.06		38.73	36.10	33.62		27.43	34.59
+FlexibleAtt	37.97	36.86		38.56	35.62	33.94		27.37	34.47
+SDAtt	38.61	38.19	9**†	39.81 ** [†]	36.74**	34.63 ** [†]		28.61 ** [†]	35.60
EN-DE	Dev (newstest2012)		newstest2013		newstest2014		newstest2015		AVG
PBSMT	14.89	14.89		16.75	15.19		<u>16.84</u>		16.35
GlobalAtt	17.09		20.24		18.67		19.78		19.56
+Chen et al. (2017)	18.03		21.44		19.96		21.07		20.82
+LocalAtt	17.78	17.78		21.26	19.87		20.67		20.6
+FlexibleAtt	17.56	17.56		21.10	19.76		20.74		20.53
+SDAtt	18.65		22.11***		20.75 ** [†]		22.05***		21.64

Table 1: Results on ZH-EN and EN-DE translation tasks for the proposed syntax-directed attention

Table 2: Results on ZH-EN and EN-DE translation tasks for the proposed double context mechanism

